Social Intelligence

LinkedIn Comment Signals

High-intent signals from prospect LinkedIn comments. AI-filtered for signal quality with pain point extraction, initiative detection, technology mentions, and relationship context across 4M+ contacts.

Social Intelligence illustration
4M+

Contacts Covered

1

Signal Subtypes

Daily

Refresh Cadence

~15-20% of comments

Signal Yield

Social Intelligence1 subtypes · Daily refresh

What Are LinkedIn Comment Signals?

LinkedIn comments often reveal more about a prospect's thinking than their own posts. When someone comments on a post about AI adoption challenges, argues about vendor selection, or asks questions about implementation approaches, they are signaling active interest in a topic — and doing so more candidly than in curated personal posts.

Autobound tracks comment activity across millions of contacts, filtering aggressively for signal quality. Short comments, celebratory reactions, and colleague interactions are filtered out (96% noise reduction). What remains are substantive comments where prospects ask questions, share opinions, or reveal pain points — yielding about 15-20 high-value signals per 100 raw comments.

Each LinkedIn comment signal includes the full comment text, the parent post context, AI-classified intent (question, disagreement, insight, recommendation), pain points with intensity scoring, initiatives with urgency scoring, and inferred relationship to the poster. This depth lets you understand not just what the prospect said, but why it matters.

Comment signals are perfect for warm outreach that feels organic. Referencing someone's thoughtful comment on an industry post is one of the most natural conversation starters in B2B sales — far more effective than referencing a company's funding round or headcount growth.

Example Signal Subtypes

linkedinPostComment

See It in Action

Real-World Example

1

Signal Detected

A VP of Sales at Snowflake comments on a post about CRM data quality: 'We spent 6 months cleaning our Salesforce data before any AI features worked. The dirty secret nobody talks about.' — AI-detected pain intensity of 0.9.

2

Sales Action

A data quality platform sends a message: 'Your comment about 6 months of CRM cleanup really resonated — we automate exactly that process. Most teams see clean data in weeks, not months. Worth a quick look?'

3

Result

Demo booked because the outreach addressed a specific frustration the prospect voluntarily shared, making the pitch feel like a solution rather than a cold call.

Data Schema

LinkedIn Comment Signal Schema

Comment signals include AI-filtered quality scoring, intent classification, pain point and initiative extraction, parent post context, and relationship inference.

{
  "signal_id": "f40afdf7-bd1f-4362-8dee-78b75aced2b7",
  "signal_type": "linkedin-comment",
  "signal_subtype": "linkedinPostComment",
  "detected_at": "2026-01-23T13: 56: 54Z",
  "association": "contact",
  "contact": {
    "full_name": "Luigi F.",
    "job_title": "ITIL Product Ambassador | Keynote Speaker",
    "linkedin_url": "https://www.linkedin.com/in/theitsmpractice"
  },
  "company": {
    "name": "PeopleCert",
    "domain": "peoplecert.org",
    "industries": ["Education Administration Programs"],
    "employee_count_low": 1001
  },
  "data": {
    "comment_summary": "Argues AI failure is leadership, not tech; emphasizes Knowledge Management before automation.",
    "comment_text": "Great episode! This is a leadership failure, not a technology one. AI amplifies what already exists. Leaders who want impact invest in KM first, automation second.",
    "comment_url": "https://www.linkedin.com/feed/update/urn:li:activity: 7412575850081996801",
    "comment_intent": "addition",
    "signal_quality": 0.7,
    "pain_points": [
      { "topic": "scaling gaps due to missing knowledge when implementing AI", "intensity": 0.8 }
    ],
    "initiatives": [
      { "topic": "investing in knowledge management before automation", "urgency": 0.8 }
    ],
    "technologies_mentioned": [{ "name": "AI", "status": "considering" }],
    "parent_post": {
      "post_summary": "Adjunct professor shares podcast about incorporating AI into service management.",
      "poster_name": "Jeffrey Tefertiller",
      "poster_job_title": "Adjunct Professor"
    }
  }
}
GCS Bucket: gs://autobound-linkedin-comments-contact-v1/Formats: JSONL + ParquetRefresh: Daily

Use Cases

How Sales Teams Use LinkedIn Comment Signals

1

Social Selling Conversation Starters

Reference a prospect's specific LinkedIn comment to start a conversation that feels organic, not sales-y. 'Loved your take on KM before automation — that's exactly our philosophy' is a powerful opener.

2

Topic-Based Intent Detection

Comments reveal what topics prospects actively think about. When someone repeatedly comments on posts about cloud migration, that is a stronger intent signal than a single LinkedIn post.

3

Pain Point Discovery

Comments contain candid expressions of frustration and challenge. AI-extracted pain points with intensity scoring let you focus on prospects with the most acute needs.

4

Technology Evaluation Signals

When prospects comment on vendor comparison posts or ask implementation questions, they are likely evaluating solutions. Technology mentions with status tags (evaluating, using, migrating) reveal buying intent.

How It Works

From Raw Data to Actionable Signals

Autobound transforms unstructured data into structured, scored signals your team can act on immediately.

1

Autobound Ingests

Raw data from LinkedIn API, Glassdoor, GitHub, Reddit, G2 is continuously collected and normalized.

2

AI Extracts & Scores

ML models extract signal subtypes with relevance scoring, confidence levels, and sentiment analysis.

3

You Receive

Structured JSONL signals delivered via REST API, GCS Push, Generate Insights API, or Flat File export.

Flexible Delivery

Access LinkedIn Comment Signals Your Way

LinkedIn Comment Signals are available through all Autobound delivery methods. Choose the approach that fits your infrastructure.

REST API

REST API

Real-time access with subtype filtering

300 req/min
GCS Push

GCS Push

Automated delivery to your bucket

JSONL + Parquet
Generate Insights API

Generate Insights API

On-demand LLM-ranked insights

AI relevance scoring
Flat File

Flat File

Bulk exports for data warehouses

CSV, JSON, Parquet

Related Signals

Combine for Deeper Intelligence

LinkedIn Comment Signals become more powerful when combined with related signal types. Cross-referencing multiple signals reveals patterns that no single source can surface alone.

3 vendors consolidated
By consolidating three data vendors into Autobound's Generate Insights API, we added 100+ new signal types and saved 4 months of engineering time.

AiSDR Team

Engineering, AiSDR

API Documentation

Explore the API

Full schema reference, sample requests, and integration guides. Everything you need to start consuming LinkedIn Comment Signals in your application.

Ready to License
LinkedIn Comment Signals?

Custom pricing based on signal types, delivery frequency, and volume. Get a proof-of-concept running in days, not months.